CalS7 encodes a callose synthase responsible for callose deposition in the phloem.

نویسندگان

  • Bo Xie
  • Xiaomin Wang
  • Maosheng Zhu
  • Zhongming Zhang
  • Zonglie Hong
چکیده

It has been known for more than a century that sieve plates in the phloem in plants contain callose, a β-1,3-glucan. However, the genes responsible for callose deposition in this subcellular location have not been identified. In this paper we examine callose deposition patterns in T-DNA insertion mutants (cs7) of the Callose Synthase 7 (CalS7) gene. We demonstrated here that the CalS7 gene is expressed specifically in the phloem of vascular tissues. Callose deposition in the phloem, especially in the sieve elements, was greatly reduced in cs7 mutants. Ultrastructural analysis of developing sieve elements revealed that callose failed to accumulate in the plasmodesmata of incipient sieve plates at the early perforation stage of phloem development, resulting in the formation of sieve plates with fewer pores. In wild-type Arabidopsis plants, callose is present as a constituent polysaccharide in the phloem of the stem, and its accumulation can also be induced by wounding. Callose accumulation in both conditions was eliminated in mature sieve plates of cs7 mutants. These results demonstrate that CalS7 is a phloem-specific callose synthase gene, and is responsible for callose deposition in developing sieve elements during phloem formation and in mature phloem induced by wounding. The mutant plants exhibited moderate reduction in seedling height and produced aberrant pollen grains and short siliques with aborted embryos, suggesting that CalS7 also plays a role in plant growth and reproduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unplugging the callose plug from sieve pores.

The presence of callose in sieve plates has been known for a long time, but how this polysaccharide plug is synthesized has remained unsolved. Two independent laboratories have recently reported the identification of callose synthase 7 (CalS7), also known as glucan synthase-like 7 (GSL7), as the enzyme responsible for callose deposition in sieve plates. Mutant plants defective in this enzyme fa...

متن کامل

Role of callose synthases in transfer cell wall development in tocopherol deficient Arabidopsis mutants

Tocopherols (vitamin E) are lipid-soluble antioxidants produced by all plants and algae, and many cyanobacteria, yet their functions in these photosynthetic organisms are still not fully understood. We have previously reported that the vitamin E deficient 2 (vte2) mutant of Arabidopsis thaliana is sensitive to low temperature (LT) due to impaired transfer cell wall (TCW) development and photoas...

متن کامل

Silicon amendment to rice plants contributes to reduced feeding in a phloem‐sucking insect through modulation of callose deposition

Silicon (Si) uptake by Poaceae plants has beneficial effects on herbivore defense. Increased plant physical barrier and altered herbivorous feeding behaviors are documented to reduce herbivorous arthropod feeding and contribute to enhanced plant defense. Here, we show that Si amendment to rice (Oryza sativa) plants contributes to reduced feeding in a phloem feeder, the brown planthopper (Nilapa...

متن کامل

Stronger induction of callose deposition in barley by Russian wheat aphid than bird cherry-oat aphid is not associated with differences in callose synthase or beta-1,3-glucanase transcript abundance.

The effects of infestation by the bird cherry-oat aphid (BCA), (Rhopalosiphum padi L) and the Russian wheat aphid (RWA) (Diuraphis noxia Mordvilko) on callose deposition and transcription of genes related to callose accumulation were investigated in barley (Hordeum vulgare L. cv. Clipper). The BCA, which gives no visible symptoms, induced very limited callose deposition, even after 14 days of i...

متن کامل

Herbivore-induced callose deposition on the sieve plates of rice: an important mechanism for host resistance.

The brown planthopper (Nilaparvata lugens Stål; BPH) is a specialist herbivore on rice (Oryza sativa) that ingests phloem sap from the plant through its stylet mouthparts. Electronic penetration graphs revealed that BPH insects spent more time wandering over plants carrying the resistance genes Bph14 and Bph15, but less time ingesting phloem than they did on susceptible plants. They also showed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 65 1  شماره 

صفحات  -

تاریخ انتشار 2011